Mathematical Model

1) Thinning Poisson Process

Thinning of a Poisson Process

_ Stream of
M(t) ~ admitted
4/ rate A\; = pA
JN'E!;I L CLIS'[OH"IE!"S
rate A T o
P No(t) _ Stream of
rate Ay = (1-p)A rejected

customers

Step 1. Let U = Math.random()
Step 2. If P(accept) < U:
return True
Else:
return False

-Firstly, we let the variable U to be a uniform random generator between 0 to 1.
-Secondly, if the acceptance probability that we assign is less than variable U,

boolean value True will be returned. Otherwise, boolean value False will be returned.

2) Inverse Transform for customer arrival

-Let X be a random variable of customers arrival with is distributed exponentially with
rate 0.5.

if X has the probability density function:

oo x| AeTM g >,
f(z) = {n z < 0.

Note: E[X]| =1/A.

-Assuming rate lambda = 0.5, Inverse CDF = X = —2In(1-U).

Step 1. Let U = Math.random()
Step 2. Let time_delta = -2 * Math.log(1 - U)

-Firstly, we let the variable U to be a uniform random generator between 0 to 1.

-Secondly, we let the variable time_delta =
Inverse CDF of Exponential = X = —2In(1—U)

3) Movement of the agents

Visual Logical Implementation in Javascript

Case 1: No non-colliding
objects in agent's surroundings Case 1: The direction array contains

its original direction weights » P2 Pa Ps
P3

| up |down| stay ‘ left ‘n‘ght‘

| up |down| stay ‘ left | right‘

— Wi
. pi =3
Case 2: Non-colliding object(s) o
blocking certain direction(s) Case 2: The "up” weight is set to 0,
de .
agenl loes not move up. P pa ps
0 . The probabilites of P2
- moving in each .
W dovn | stay | left | right ‘ direction follows the | up | down | stay ‘ left ‘ right ‘
relative weights for Wi
each direction. i = =0 =
i o ? w =0
The pmf of each
direction is then the
Case 3: Non-colliding objects direction weight
blocking agent in all directions Case 3: All weights except "stay" divided by the sum of Pa
are set to 0, agent just stays in place. weights.
N & U ! We generate the
|* : J discrete pmf using the up | down | stay | left | right
[up | down | stay | left [right ‘ generalized inverse] ¥ 8
A transform algorithmn w;
from week 9. Pi= Tt Wiw2waws =0
Case 4: Ager;loﬁside map's left Case 4: The weight in the direction
er of the border are set to 0, agent does
P2 Ps
not move left P
P3
| down | sta left | right
| up |dow11|stay‘ leh|righr‘ i Y e ‘

Wi
pPi= Tt wa=0

The diagram above shows how the non-colliding agent moves using a probability
mass function model. There are a total of 5 directions : up, down, stay, left and right.
Each direction is assigned to some weight at the user’s discretion. For example,
agent direction’s = [1, 1, 1, 1, 1]. The agent has a probability of % of moving in each
direction. We can also adjust the agent’s behaviour such that they will generally

move up or down at a specific area as well or such that they will avoid moving in that
specific direction at all.

For Case 1, we simulate a situation such that there are no objects near the agent.
Thus, the agent can move in the intended direction based on the given weight in the
specific area.

For Case 2, we simulate a situation such that there is a non-colliding object at the
top on the agent. Therefore, we assigned the ‘up’ weight to be 0. If the agent
direction’s = [0, 1, 1, 1, 1], the agent has a probability of }1 of moving in each
direction except for the up direction.

For Case 3, we simulate a situation such that there are non-colliding objects at every
side of the agent. Therefore, we assigned the weights to be 0 in those direction. If
the agent direction’s = [0, 0, 1, 0, 0], the agent is just going to stay at the same spot.

For Case 4, we simulate a situation where the agent have reached a left border of
the map of the simulation. Therefore, we assigned the ‘left’ weight to be 0. If the
agent direction’s = [1, 1, 1, 0, 1], the agent has a probability of 711 of moving in each
direction except for the left direction.

